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ABSTRACT 

 

Plant diseases cause low agricultural productivity. Plant diseases are 

challenging to control and identify by the majority of farmers. In order to 

reduce future losses, early disease diagnosis is necessary. This study presents 

a deep learning approach for detecting tomato leaf diseases using 

Convolutional Neural Networks (CNNs). The proposed method involves 

preprocessing the tomato leaf images, followed by training the CNN model to 

classify them into one of ten categories: healthy, yellow leaf curl virus (YLCV), 

bacterial spot (BS), early blight (EB), leaf mold (LM), spectoria leaf spot (SLS) 

target spot (TS), two spotted spider mite spot(TSSMS), mosaic virus(MV) and 

late blight (LB). The model was trained using a dataset of 16021 tomato leaf 

images. The training was conducted for 10 epochs, 20 epochs, and 50 epochs, 

and the accuracy achieved was 64%, 94%, and 97%, respectively. These 

results demonstrate the effectiveness of the proposed approach in detecting 

tomato leaf diseases, and the performance improves with increasing epochs. 

The automated approach can aid in the early detection and prevention of 

tomato diseases, which can ultimately help in improving the yield and quality 

of tomato crops.  
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CHAPTER – 1 

INTRODUCTION 
1.1 Background                                   

 

Tomatoes are one of the most widely cultivated and consumed crops 

globally, making it a significant part of the agriculture industry. 

Unfortunately, tomato plants are susceptible to various diseases, which can 

lead to significant economic losses due to reduced yield and quality. One of 

the most common diseases that affect tomato plants is grey leaf spot, which 

damages and kills the leaves, ultimately hindering the plant's ability to 

produce fruit. The infection caused by the pathogen responsible for grey leaf 

spot in tomato plants progresses through four phases: contact, invasion, 

latency, and onset. Detecting diseases early can help prevent large-scale 

pandemics and enable appropriate management practices. 

Traditional methods of detecting diseases are time-consuming and 

expensive, especially when the farm is extensive, making it challenging to 

monitor each plant. Thus, there is a need for a more efficient and cost-effective 

solution. Image processing techniques can automate the detection of diseases 

in leaves, thereby saving time, money, and effort. The dataset used in this 

study consists of 16021 images of ten types of diseased tomato leaf images. 

All images are resized to 256 x 256 and divided into three parts, namely, 

training, testing, and validation datasets. By analyzing the features of 

diseased leaves, image processing technology can accurately diagnose 

illnesses quickly. Deep learning techniques, specifically convolutional neural 

networks (CNNs), have proven to be effective in image classification tasks, 

including plant disease detection. 

 

1.2 Problem Statement 

Manual plant disease detection methods are time-consuming and 

inefficient, particularly for large-scale farms. Traditional disease detection 

techniques, such as visual inspection, are susceptible to errors and often 
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require a team of experts. Moreover, early disease detection is essential to 

control and prevent plant diseases, which traditional techniques cannot 

guarantee. Therefore, there is a need for an accurate, efficient, and automated 

disease detection approach for tomato plants that can provide early detection 

and effective prevention. 

 

1.3 Objectives  

The main objective of this study is to develop an automated system for 

detecting and classifying tomato leaf diseases using CNN. Specifically, this 

study aims to: 

 

1 Develop a CNN model that can accurately detect and classify common 

tomato leaf diseases, such as early blight, late blight mold, bacteria spot, 

leaf mold, target spot, yellow leaf curl virus, two spotted spider mite, 

mosaic virus and septoria leaf spot. 

2 Compare the performance of the developed CNN model with at different 

epochs. 

3 Contribute to sustainable agriculture by providing a cost-effective, 

automated solution to identify tomato leaf diseases at an early stage, 

thereby enabling farmers to take preventive measures and reduce crop 

losses. 

 

1.4 Motivation  

Identifying and recognition of leaves disease is the solution for saving 

the reduction of large farm in crop disease detection and profit in productivity, 

it is beneficial in agricultural institute, Biological research. 
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1.5 Organization of the Project 
 

 The remaining sections of this study are organized as follows: 

 Chapter 2: Literature Review – provides  about Literature Survey in 

which the existing methods for image classification of Plant leaf 

diseases were described. 

 Chapter 3: Methodology - presents a detailed description of the dataset 

used in this study on tomato leaf disease detection using CNN, 

including dataset collection, preprocessing, datset statistics and 

dataset split for train, valid and test datasets. 

 Chapter 4: This chapter describes the Convolutional Neural Network 

(CNN) model architecture used for our image classification task and the 

process of training the model. 

 Chapter 5: This chapter, describe the algorithm process and related 

python program code. 

 Chapter 6:  This chapter, that presents the visualization of the training 

results and predictive analysis obtained from the proposed CNN-based 

approach. 

 Chapter 7:  This chapter, describes the conclusion and future scope. 
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CHAPTER – 2 

LITERATURE REVIEW 
 

In this chapter, presents literature survey of traditional plant disease 

detection approaches based on computer vision technologies are commonly 

utilized to extract the texture, shape, colour, and other features of disease 

spots. This method has a low identification efficiency because it relies on an 

extensive expert understanding of agricultural illnesses. Many academics 

have conducted significant research based on deep learning technology to 

increase the accuracy of plant disease detection in recent years, thanks to the 

fast growth of artificial intelligence technology. The majority of existing 

techniques to plant disease analysis are based on disease classification. 

 

A. A Survey on Supervised Convolutional Neural Network and Its Major 

Applications; D. T. Mane and U. V. Kulkarni 

With the advent of deep learning, the world has proceeded into the new 

era of machine learning. With the main intention of getting closer to the 

original goal of machine learning, that is, Artificial Intelligence, deep learning 

has opened up new avenues to explore. Artificial Neural Networks (ANNs) are 

biologically motivated machine learning algorithms applied to solve problems, 

where conventional approach fails, such as computer vision. It takes in the 

input, let it be an image or an audio signal, extracts features which describe 

the input and generalizes these features so that the results obtained can be 

replicated for other examples of the input. This paper gives an overview of a 

particular type of ANN, known as supervised Convolutional Neural Network 

(CNN) and gives information of its development and results in various fields. 

Initially, we see the history of CNN followed by its architecture and results of 

its applications. The references of the few used papers have been mentioned 

here. 
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B. Tomato crop disease classification Using A Pre-Trained Deep Learning 

Algorithm; Aravind KR, Raja P, Anirudh R. 

A study on the classification of three major tomato crop diseases - 

Early Blight, Late Blight, and Leaf Mold - using a pre-trained deep learning 

algorithm called VGG16. The authors describe the dataset used for the study, 

which consisted of images of tomato leaves infected with the three diseases 

and healthy leaves. The VGG16 algorithm was fine-tuned using transfer 

learning to classify the images into the four categories. The authors report 

that the VGG16 algorithm achieved an accuracy of 98.67% in classifying the 

images, outperforming other algorithms such as Random Forest and K-

Nearest Neighbours. The paper also discusses the limitations of the study and 

potential areas for future research, such as the use of more diverse datasets 

and the development of a mobile application for farmers to identify crop 

diseases. 

 

C. Attention Embedded Residual CNN for Disease Detection in Tomato 

Leaves; Karthik R, Hariharan M, Anand Sundar, Mathikshara Priyanka, 

Johnson Annie, Menaka R. 

A dataset consisting of images of tomato leaves affected by five different 

diseases - Early Blight, Late Blight, Leaf Mold, Septoria Leaf Spot, and Spider 

Mites - and healthy leaves. The proposed CNN architecture consists of 

residual blocks, which enable the network to learn the mapping between the 

input and output more efficiently, and attention modules, which help the 

network to focus on the most important features in the images. The authors 

report that the proposed approach achieved an accuracy of 98.3% in detecting 

tomato crop diseases, outperforming other state-of-the-art approaches such 

as VGG16 and Inception-v3. The paper also provides a detailed analysis of the 

performance of the proposed approach on different disease classes and 

provides visualizations of the attention maps generated by the attention 

modules. 
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D. Research on deep learning in apple leaf disease recognition. Comput 

Electron Agric; Zhong Yong, Zhao Ming. 

The article presents a study on the use of deep learning algorithms for 

the recognition of apple leaf diseases. The authors developed a deep learning 

framework that uses a convolutional neural network (CNN) to automatically 

identify and classify different apple leaf diseases based on images. The 

authors trained their model on a large dataset of apple leaf images and 

achieved high accuracy in disease recognition across multiple apple cultivars. 

They also demonstrated the potential for their model to be used in real-world 

scenarios, such as in orchards and nurseries. The findings of this study may 

have practical applications in the agricultural industry by providing a tool for 

early detection and diagnosis of apple leaf diseases. This could ultimately lead 

to improved crop yields and reduced economic losses for apple farmers. 

Overall, this article demonstrates the potential for deep learning 

algorithms to revolutionize the field of crop disease detection and 

management, with practical applications in a range of crops and settings. 

 

E. AI-powered banana diseases and pest detection. Plant Methods. 2019; 

15:92; Selvaraj MG, Vergara A, Ruiz H, et al. 

A dataset of banana plant images and show that it can accurately 

detect the presence of diseases and pests with high accuracy. They also 

demonstrate that the method can be applied in real-world settings using a 

smartphone app that allows farmers to easily capture and upload images of 

their plants for analysis. Overall, the study shows the potential of machine 

learning techniques for plant disease and pest detection and highlights the 

importance of developing practical and accessible tools to support farmers in 

monitoring and managing their crops. The authors suggest that their 

approach could be extended to other crops and regions, contributing to the 

development of more sustainable and efficient agricultural practices. 
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F. Rich Feature Hierarchies for Accurate Object Detection and Semantic 

Segmentation; Girshick, R., J. Donahue, T. Darrell, and J. Malik. 

The paper highlights the potential of deep learning techniques for 

object detection and segmentation tasks, and introduces a novel approach 

that combines convolutional neural networks with region-based processing 

for improved accuracy and efficiency. The R-CNN approach has since been 

extended and improved in subsequent research, and has become a widely 

used method in computer vision and object recognition. 

 

G. Characteristics of tomato plant diseases—a study for tomato plant 

disease identification; Fuentes A, Yoon S, Youngki H, Lee Y, Park DS. 

Deep learning was proposed by Fuentes et al. for identifying diseases 

and pests in tomato plant photos acquired at varying camera resolutions. 

Deep learning metaarchitectures, as well as multiple CNN object detectors, 

were utilized. Data expansion and local and global class annotation were 

utilized to boost training accuracy and decrease false positives. A large-scale 

tomato disease dataset was used for end-to-end training and testing. The 

system correctly detected nine different pests and diseases from the 

complicated scenarios 

 

G. A Deep convolutional neural networks for mobile capture device-based 

crop disease classification in the wild. Comput Electron Agric; Picon A, 

Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes A. 

The article presents a study on the use of deep convolutional neural 

networks (CNNs) for crop disease classification using images captured by 

mobile devices in the field. The authors developed a CNN-based model called 

"DeepPlantPathologist" that can automatically classify crop diseases based on 

images of leaves captured in the field. 

 



Tomato Leaf Disease Detection using CNN                                                                                             

Page | 8 
Dept. of ECE, RGMCET, Nandyal 

The authors trained their model on a large dataset of crop images and 

achieved high accuracy in disease classification across multiple crop types. 

They also demonstrated the potential for their model to be used in the field 

with mobile devices, allowing for real-time disease detection and diagnosis. 

Overall, this article demonstrates the potential for deep CNNs to 

revolutionize crop disease management by providing an efficient and accurate 

tool for disease detection and diagnosis in the field. This technology could 

ultimately lead to improved crop yields and reduced economic losses for 

farmers. 

 

This chapter represented the literature survey of traditional plant 

disease detection approaches based on computer vision technologies are 

commonly utilized to extract the texture, shape, colour, and other features of 

disease spots. In the chapter 3, will presents a detailed description of the 

dataset used in this study on tomato leaf disease detection using CNN, 

including dataset collection, preprocessing, datset statistics and dataset split 

for train, valid and test datasets. 
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CHAPTER – 3 

METHODOLOGY 
 

This chapter presents a detailed description of the dataset used in this study 

on tomato leaf disease detection using CNN, including dataset collection, 

preprocessing, datset statistics and dataset split for train, valid and test 

datasets. 

 

3.1 Methodology Flow chart 

The following figure shows the methodology flow chart, it describes the 

way of approached to detect the tomato leaf diseases. 

 

Figure 3.1 Methodology flow chart 

 

3.2 Dataset Collection 
 

The dataset used for this project was obtained from Kaggle. The 

dataset consists of 16,021 tomato leaf images with ten classes: 

Tomato_Bacterial_spot,Tomato_Early_blight,Tomato_Late_blight,Tomato_Lea

f_Mold,Tomato_Septoria_leaf_spot,Tomato_Spider_mites_Two_spotted_spider
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_mite,Tomato__Target_Spot,Tomato__Tomato_YellowLeaf__Curl_Virus,Tomat

o__Tomato_mosaic_virus and Tomato_healthy. The images were captured 

from different locations, seasons, and under different lighting conditions. 

3.3 Dataset Statistics 

The dataset consists of 16,021 images with ten different classes 

representing different types of tomato leaf diseases and a healthy class. Table 

1 presents the class distribution of the dataset. 

Table 3.1 Class distribution of the dataset. 

S.No Type of tomato leaf disease No. of images 

1 Tomato_Bacterial_spot 2,127 

2 Tomato_Early_blight 1,000 

3 Tomato_Late_blight 1,909 

4 Tomato_Leaf_Mold 952 

5 Tomato_Septoria_leaf_spot 1,771 

6 Tomato_Spider_mites_Two_spotted_spider_mite 1,676 

7 Tomato__Target_Spot 1,404 

8 Tomato__Tomato_YellowLeaf__Curl_Virus 3,209 

9 Tomato__Tomato_mosaic_virus 373 

10 Tomato_healthy 1,591 

 

 

3.4 Preprocessing 

Before training the CNN model, the dataset was preprocessed using 

several techniques such as data augmentation, normalization, and resizing.  

Data Augmentation is a very popular technique in image processing, 

especially computer vision to increase the diversity and amount of training 

data by applying random (but realistic) transformations. Data augmentation 

techniques such as rotation, flipping (horizontal and vertical), and random 

cropping were applied to increase the size of the dataset and introduce more 

variability in the data.  
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Normalization was applied to scale the pixel values between 0 and 255 to 

improve the convergence of the model during training.  

Resizing was also applied to standardize the image size to 256x256 pixels to 

reduce the computational cost of training the mode and also send the images 

as batches as the batch size is 32. 

3.5 Dataset Split 

To evaluate the performance of the CNN model, the dataset was split 

into three subsets, namely the training dataset, validation dataset, and test 

dataset. The training dataset was used to train the model, the validation 

dataset was used to tune the hyperparameters, and the test dataset was used 

to evaluate the performance of the model on unseen data. 

The dataset was split randomly into the three subsets, with the 

training dataset containing 80% of the images, the validation dataset 

containing 10% of the images, and the test dataset containing 10% of the 

images. Table 2 shows the dataset lengths for the train, validation, and test 

datasets. 

 Table 3.2 Dataset lengths for train, valid and test. 

Train dataset length 400 

Valid dataset length 50 

Test dataset length 51 

Total dataset length (400+50+51)=501 

 

The dataset split ensures that the model is trained on a sufficiently 

large dataset while also allowing for a fair evaluation of its performance on 

unseen data. 

This chapter described about the methodology of the system. In the next 

chapter, Chapter 4, presents the CNN model architecture and the training 

process. The dataset split presented in this chapter is used to train and 

evaluate the performance of the model. 
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CHAPTER – 4 

CNN MODEL ARCHITECTURE AND TRAINING 

PROCESS 
 

In this chapter, describes the Convolutional Neural Network (CNN) model 

architecture used for our image classification task and the process of training 

the model. The architecture includes multiple convolutional and pooling 

layers, followed by fully connected layers, and ends with a softmax output 

layer. The training process involves initializing the model parameters, defining 

the loss function, selecting an optimization algorithm, and iteratively 

updating the model parameters using backpropagation and gradient descent. 

 

4.1 CNN Model Architecture 

A Convolutional Neural Network (CNN) is a type of artificial neural 

network commonly used for image and video analysis, recognition, and 

processing. It is designed to automatically extract meaningful features from 

raw pixel data of an image, enabling it to recognize objects, faces, shapes, and 

patterns. 

CNNs are inspired by the structure and function of the visual cortex 

in the brain. The network is made up of a series of interconnected layers, each 

consisting of several neurons that perform simple computations on the input 

data. The layers are typically arranged in a specific order, including 

convolutional layers, pooling layers, and fully connected layers. The following 

fig 2  shows the CNN model architecture with properly connected layers. 
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Figure 4.1 CNN model architecture 

4.1.1 Convolution Layer 

Convolutional layers are the core building blocks of a CNN. They apply 

filters or kernels to the input image, sliding over the entire image and 

performing a dot product between the filter and the input pixels. This process 

generates a feature map, highlighting the regions of the input image that are 

most important for recognizing a particular pattern or object. Fig 3 shows the 

mathematical operation kernel filter with input image. 

   

 

 

 

 

 

 

  

  
Figure 4.2 Convolution layer 
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Fig 3 illustrates the mathematical operation of the convolution layer, 

where a 2x2 kernel filter is convolved with an input image. The resulting 

feature map highlights the edges and corners of the object in the image. 

4.1.2 Relu Activation Function 

The Rectified Linear Unit (ReLU) activation function is a widely used 

activation function in CNNs. It introduces nonlinearity into the network and 

improves its ability to model complex relationships between the input and 

output data. The ReLU function only allows positive values to pass through 

the neuron. When the input to the neuron is positive, the output is equal to 

the input value, and when the input is negative, the output is equal to zero. 

 The ReLU function is defined as f(x) = max{0,x}. 

4.1.3 Pooling Layers 

Pooling layers are an essential component of Convolutional Neural 

Networks (CNNs) used in computer vision applications. They are used to 

reduce the spatial dimensionality (width and height) of the input data while 

retaining its essential features. 

Max pooling is a commonly used type of pooling layer in which the 

maximum value within a defined region of the input feature map is selected 

and then passed on to the next layer. The size of this defined region (often 

referred to as the pooling window or kernel size) is typically set by the user. 

Fig 4 shows the operation of max pooling. 

For example, let's say we have an input feature map with a size of 6x6 

and a pooling window size of 2x2. The max pooling operation would take place 

as follows: 

1. The input feature map is divided into non-overlapping regions of size 

2x2. 

2. The maximum value within each region is identified. 

3. A new feature map is created with a size of 3x3, consisting of the 

maximum values from each region. 
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Figure 2.3 Max pooling layer 

4.1.4 Fully Connected Layer  

 

 Fully connected input layer – The preceding layers' output is 

"flattened" and turned into a single vector which is used as an input 

for the next stage.   

 The first fully connected layer – adds weights to the inputs from the 

feature analysis to anticipate the proper label.   

 Fully connected output layer – offers the probability for each label in 

the end.   

Fig 5 shows the internal working of fully connected layer  

 

 

 

 

 

 

 

 

 

Figure 4.4 Fully connected layer 
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4.1.5 Softmax Activation Function 

 

The softmax activation function is a mathematical function that is 

commonly used in artificial neural networks, particularly in multi-class 

classification problems. It is used to produce a probability distribution over 

the possible classes in the output layer of a neural network. 

    

   Where Zi is the i-th element of the input vector and the sum  

(i.e.  )is taken over all elements j in the input vector. 

4.1.6 Sparse Categorical Cross entropy 

 

The sparse categorical cross-entropy loss function calculates the cross-

entropy loss between the predicted probability distribution and the target 

label tensor, taking into account the sparsity of the target label tensor. The 

formula for sparse categorical cross-entropy is: 

 

where y_true is the target label tensor, y_pred is the predicted output of the 

model, and the log and sum operations are performed over the predicted 

probability distribution for each sample in the batch, but only considering the 

element corresponding to the class index of the target label. 
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4.1.7 Adam Optimizer 

Adam (Adaptive Moment Estimation) optimizer is a stochastic gradient 

descent optimization algorithm used to optimize the parameters of a neural 

network during training. In other terms Adam is an optimizer used to update 

the wights and biases of a neural network during training. 

4.1.8 Summary of The CNN Model 

The construction of a Convolutional Neural Network (CNN) model with 

multiple levels, each consisting of convolution layers and max pooling layers. 

The model has six levels with decreasing output shape reduction, and the 

input data is sent as batches with a batch size of 32. The convolution layers 

have 32, 64, 64, 64, 64, and 64 filters, respectively, with a kernel size of 3x3 

and ReLU activation. Each convolution layer is followed by a max pooling layer 

with a pool size of 2x2. The output shape of each layer is calculated based on 

the input size, kernel size, padding, and stride. The output parameters of each 

convolution layer are calculated based on the kernel filter size, number of 

filters, and number of previous filters, while the output parameters of the 

dense layer are based on the input and output channel numbers. The overall 

CNN model data is summarized in figure 6 

 

 

 

 

Figure 4.5 Construction layers of CNN model at each level 

The data is given format as following way are : 
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a. Convolutional layer: 32 filters, kernel size 3x3, ReLU activation 

i. Max pooling layer: pool size 2x2 

b. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation 
i. Max pooling layer: pool size 2x2 

c. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation 

i. Max pooling layer: pool size 2x2 

d. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation 
i. Max pooling layer: pool size 2x2 

e. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation 

i. Max pooling layer: pool size 2x2 
f. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation 

i. Max pooling layer: pool size 2x2 

The following figure shows the summary of CNN model data of the otput 

shapes and respected parameters at each convolution layer and max pooling 

layers.  
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Figure 4.6 CNN model output shapes and parameters. 

  

The images are sent as batches, the batch size is 32 and before fed to the algorithm. In  

the output shape just observe that first column represents batch size that means it contains 32 

images. 

Parameters 

A. Output Shape reduction from one layer to other. 

There are two cases to determine the output shape of each layer : 

1. At the kernel filter to the convolution layer to convolution then just do, 

Output shape = Input(height or width) -kernel(height or width +1) 
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Input size is (i, i) 

Kernel size is (k,k) 

Output shape = i-k + 1 

This one is applicable for padding is false and stride is 1 

2. At max pooling then just take half of the size of the convolution layer. 

Convolution Layer size is (x,x). 

Output shape= floor (x/2) 

 B. Parameters Calculation 

a. For first convolution layer 

Kernel filter size is (m, n) 

   Output parameter = (m x n x channels +1)x no. of filters 

  b. For remaining layers 

   Output parameters = (m x n x no. of previous filters+1)x no. of filters 

  c. For Dense layer  

   Input Channel no is i. 

   Output Channel no is j. 

   Output parameters = j x (i+1) 

4.2 Training Process 

The training process involves initializing the model parameters, 

defining the loss function, selecting an optimization algorithm, and iteratively 

updating the model parameters using backpropagation and gradient descent. 

It discuss step-by-step process involved in training a neural network: 

 

1. The first step in the training process is loading and preprocessing the 

training data. This involves normalizing the data, splitting it into 

batches, and converting it into the appropriate format for the model. 

This step is discussed in Chapter 3, section 3.3 and 3.5. 

2. The second step in the training process is defining the model 

architecture. This step involves specifying the neural network's 

architecture, including the number and type of layers, activation 

functions, optimizer, and loss function. The architecture of the CNN 

model is discussed in section 4.1. 
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3. The third step in the training process is compiling the model. This step 

involves configuring the model for training by specifying the optimizer, 

loss function, and any additional metrics to track during training. The 

Adam optimizer and Sparse Categorical Cross entropy loss function are 

discussed in current chapter sub section 4.1.4 and sub section 4.1.5, 

respectively. 

4. The final step in the training process is training the model. This step 

involves feeding the training data into the model, computing the output, 

and adjusting the model parameters using the Adam optimizer 

algorithm to minimize the loss function. The number of training epochs 

determines how many times the entire training dataset is used to train 

the model. The trained model is used for testing on the test set in the 

next chapter – 6 Results under the section 6.2 Training Results. 

 

This chapter discussed CNN model architecture and the step-by-step 

process involved in training a neural network model, including loading and 

preprocessing the training data, defining the model architecture, compiling 

the model, and training the model. In the next chapter, Chapter 5, presents 

the algorithm process, implementation code for the automatic detection for 

tomato leaf disease detection. 
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CHAPTER – 5 

SOFTWARE DESCRIPTION 
 

In this chapter, describes the algorithm process and related python program 

code. 

5.1 Algorithm Process 
 

Step. 1 -  Import the necessary libraries.  

Step. 2 - Set the input parameters, such as image size, batch size, and 

number of classes. 

Step. 3 – Load the dataset and preprocess the images 

Step. 4 -Define the CNN model architecture. 

Step. 5 - To train the CNN model at different epochs. 

Step. 6 – Evaluate the performance of the model and save the model with .h5 

               format 

Step. 7 - Reload the model and predict the tomato leaf images. 

 

5.2 PYTHON Program Code 
5.2.1 Main Code 

import tensorflow as tf 

from tensorflow.keras import models, layers 
import matplotlib.pyplot as plt 

import numpy as np 

IMAGE_SIZE = 256 
BATCH_SIZE = 32 

CHANNELS = 3 

EPOCHS = 50 

dataset = tf.keras.preprocessing.image_dataset_from_directory( 
            

r"C:\Users\KP\OneDrive\Desktop\pythonprojectdeep\Datasets\PlantVillag

e", 
shuffle = True, 

image_size = (IMAGE_SIZE,IMAGE_SIZE), 

batch_size = BATCH_SIZE 
) 
class_names = dataset.class_names 
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class_dict = {} 

count  = 0 

for names in class_names: 

   class_dict[names] = count 

    count = count + 1 

class_dict 

for image_batch, label_batch in dataset.take(1): 

    print(image_batch.shape) 

    print(label_batch.numpy()) 

for image_batch, label_batch in dataset.take(1): 

    print(image_batch[0].numpy()) 

for image_batch, label_batch in dataset.take(1): 

    print(image_batch[0].shape) 

plt.figure(figsize=(20,20)) 

for image_batch, label_image in dataset.take(1): 

    for i in range(12): 

        ax = plt.subplot(3,4,i+1) 

        plt.title(class_names[label_batch[i]]) 

        plt.imshow(image_batch[i].numpy().astype("uint8")) 

        plt.axis("off") 

def get_dataset_partition(ds, train_split = 0.8, val_split = 0.1, test_split = 0.1, 
shuffle = True, shuffle_size =1000): 

    ds_size = len(ds) 

   if shuffle: 

ds = ds.shuffle(shuffle_size, seed=12) 

    train_size = int(train_split*ds_size) 

    val_size = int(val_split*ds_size) 

    train_ds1 = ds.take(train_size) 

    val_ds1 = ds.skip(train_size).take(val_size) 

    test_ds1 = ds.skip(train_size).skip(val_size) 

    return train_ds1, val_ds1, test_ds1 

train_ds, val_ds, test_ds = get_dataset_partition(dataset) 

train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTU
NE) 

val_ds=val_ds.cache().shuffle(1000).prefetch(buffer_size = tf.data.AUTOTUNE) 

test_ds=test_ds.cache().shuffle(1000).prefetch(buffer_size = 
tf.data.AUTOTUNE) 
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resize_rescale = tf.keras.Sequential([ 

    layers.experimental.preprocessing.Resizing(IMAGE_SIZE, IMAGE_SIZE), 

    layers.experimental.preprocessing.Rescaling(1.0/255) 

]) 

data_augmentation = tf.keras.Sequential([ 

    layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"), 

    layers.experimental.preprocessing.RandomRotation(0.2) 

]) 

train_ds = train_ds.map( 

    lambda x, y: (data_augmentation(x, training=True), y) 

).prefetch(buffer_size=tf.data.AUTOTUNE) 

input_shape = (BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, CHANNELS) 

n_classes = 10 

model = models.Sequential([ 

    resize_rescale, 

    data_augmentation, 

    layers.Conv2D(32, (3,3), activation = 'relu', input_shape = input_shape), 

    layers.MaxPooling2D((2,2)), 

    layers.Conv2D(64, kernel_size = (3,3), activation = 'relu'), 

    layers.MaxPooling2D((2,2)), 

    layers.Conv2D(64, kernel_size = (3,3), activation = 'relu'), 

    layers.MaxPooling2D((2,2)), 

    layers.Conv2D(64, (3,3), activation = 'relu'), 

    layers.MaxPooling2D((2,2)), 

    layers.Conv2D(64, (3,3), activation = 'relu'), 

    layers.MaxPooling2D((2,2)), 

    layers.Conv2D(64, (3,3), activation = 'relu'), 

    layers.MaxPooling2D((2,2)), 

    layers.Flatten(), 

    layers.Dense(64, activation = 'relu'), 

    layers.Dense(n_classes, activation = 'softmax'), 

]) 

model.build(input_shape = input_shape) 

model.summary() 

model.compile( 

        optimizer = 'adam', 
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        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = 
False), 

        metrics = ['accuracy'] ) 

history = model.fit( 

        train_ds, 

        epochs = EPOCHS, 

        batch_size = BATCH_SIZE, 

        verbose = 1, 

        validation_data = val_ds ) 

scores = model.evaluate(test_ds) 

history.history.keys() 

acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

plt.figure(figsize=(15,15)) 

plt.subplot(1,2,1) 

plt.plot(range(EPOCHS), acc, label= 'Training Accuracy') 

plt.plot(range(EPOCHS), val_acc, label = 'Validation Accuracy') 

plt.legend(loc='lower right') 

plt.title('Training and Validation Accuracy') 

plt.subplot(1, 2, 2) 

plt.plot(range(EPOCHS), loss, label = 'Training loss') 

plt.plot(range(EPOCHS), val_loss, label = 'Validation loss') 

plt.legend(loc = 'upper right') 

plt.title('Training and Validation loss') 

plt.show() 

5.2.2 Prediction of an Image Code 
 

%%writefile tomatoDL.py 

import streamlit as st 

import tensorflow as tf 

from tensorflow.keras.preprocessing import image 

from tensorflow.keras.models import load_model 

import numpy as np 

import matplotlib.pyplot as plt 

from PIL import Image 
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st.set_option('deprecation.showfileUploaderEncoding', False) 

st.title('Image classifier Deep learning') 

st.text('Upload the Image') 

class_names=['Tomato_Bacterial_spot', 

 'Tomato_Early_blight', 

 'Tomato_Late_blight', 

 'Tomato_Leaf_Mold', 

 'Tomato_Septoria_leaf_spot', 

 'Tomato_Spider_mites_Two_spotted_spider_mite', 

 'Tomato__Target_Spot', 

 'Tomato__Tomato_YellowLeaf__Curl_Virus', 

 'Tomato__Tomato_mosaic_virus', 

 'Tomato_healthy'] 

reloaded_model = tf.keras.models.load_model('saved_model.h5') 

uploaded_file = st.file_uploader("Choose an Image...",type='JPG') 

if uploaded_file is not None: 

    img=Image.open(uploaded_file) 

    st.image(img,caption='Uploaded Image') 

    if st.button('PREDICT'): 

        st.write('Result..') 

        test_image = image.img_to_array(img) 

        test_image = np.expand_dims(test_image, axis = 0) 

        prediction = reloaded_model.predict(test_image,batch_size=32) 

        st.write("Predicted label : ", class_names[np.argmax(prediction[0])]) 

        confidence = round(100 * (np.max(prediction[0])), 2) 

        st.write('Confidence : ',confidence) 

! streamlit run tomatoDL.py 

 

This code provides a basic framework for implementing the proposed 

algorithmic approach for tomato leaf disease detection using CNN. However, 

it may require modifications based on the specific dataset and requirements. 

In the next chapter 6 ,that will presents the visualization of the training 

results and predictive analysis obtained from the proposed CNN-based 

approach 
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CHAPTER – 6 

RESULTS 
 

In this chapter, that presents the visualization of the training results and 

predictive analysis obtained from the proposed CNN-based approach. 

6.1 Visualization 

 The aim of this study is to detect the different types of tomato leaf 

diseases using convolutional neural networks (CNNs). The dataset used for 

this study is Plant Village, it taken from the Kaggle website, which contains 

ten types of tomato leaf images with labels indicating healthy and unhealthy 

leaves. Figure 8 shows the different types of tomato leaf images with their 

corresponding labels. 

 

     

  

Figure 6.1 visualization of tomato leaf images 
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6.2 Training results 

 

The training results for a CNN typically include the loss and accuracy 

metrics during the training process. The loss metric is a measure of how well 

the model is performing on the training data and is typically calculated as the 

difference between the predicted output and the actual output. The goal of 

the training process is to minimize the loss function. As discussed chapter 4, 

section 4.1 the concept of CNN model architecture and section 4.2 the training 

process. 

CNN model was trained at 10epochs, 20 epochs and 50epochs. The total 

dataset length is 501. As discussed chapter 3 Table 2 shows the dataset 

lengths for train, valid and test.  

From the results shown in Table 3, it is observed that the accuracy increases 

and the loss decreases with a modification in the number of epochs. 

 

      Table 6.1 Comparison of Loss and Accuracy for train and valid at 
different epochs. 

S. 

No 

No. of 

epochs 

Train 

Accuracy 

Train  

Loss 

Valid 

Accuracy 

Valid 

 Loss 

1 10 0.64 0.34 0.61 0.45 

2 20 0.94 0.15 0.91 0.26 

3 50 0.97 0.08 0.95 0.14 

 

The following figure shows the last five epochs at the given 20 epochs running 

time, accuracy and loss, it is taken from the our implemented part of CNN 

model output screenshot. 
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Figure 6.2 Loss and Accuracy at 20 epochs 

The following figure shows the last six epochs at the given 20 epochs 

running time, accuracy and loss, it is taken from the our implemented part of 

CNN model output screenshot 

 

 

Figure 6.3 Loss and Accuracy at 50 epochs 

         

Evaluate the performance of the model on test dataset. The below table 

shows the obtained accuaracy and loss at different epochs 

 Table 6.2 Comparison of Loss and Accuracy for test at different 
epochs. 

  

 

 

 

S.No No. of 

Epochs 

Train 

Accuracy 

Loss 

Accuracy 

1 10 0.60 0.38 

2 20 0.90 0.28 

3 50 o.96 0.12 
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The below figure shows the variations of accuracy and loss for both train and 

validation. 

 

Figure 6.4 Plotted the accuracy and loss for both train and validation. 

The above Training and Validation Accuracy graph shows that with the 

increase in the Training accuracy there is a increase in the Validation 

accuracy. From the Training and the Validation loss graph, it shows that with 

the decrease in the training loss there is a decrease in the validation loss. 

6.3 Predicted Images 

   Actually, the trained CNN model saved with saved_model.h5, at 

the time of predicting an image reload it and do predictions. In this project, 

the interface designed a dynamic path for image predictions using a web 

interface page, a web page with an interface that allows end-users to select 

images of their choice and perform predictions on them. The implementation 

of the interface page is kept in one file named 'tomatoDL.py'. This file contains 

the necessary code to run the web interface page and process the selected 

images for predictions. The following command run on jupyter notebook then 

open the web page on by default browser and end user select images themself 

an-d do predictions. The implementation details of this process can be found 

in Chapter 5, Section 5.2.2. prediction of an image. 

!streamlit run tomatoDL.py  
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Different types of tomato leaf images predicted with predicted label 

and confidence 

In a tomato leaf disease detection system using CNN, there are 

different types of tomato leaf images that can be predicted based on the type 

of disease present in the leaves. Some common types of tomato leaf images 

that can be predicted using a CNN include, as discussed in chapter 4 the 

concept of CNN model and training process. 
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CHAPTER - 7 

CONCLUSION AND FUTURE SCOPE 

 

7.1 Conclusion 
 

In this project, we have presented a approach for tomato leaf disease detection 

using convolutional neural networks (CNN). We trained a deep learning model 

using a dataset of tomato leaf images, which was collected from various 

sources. The trained model was able to accurately detect the presence of ten 

common tomato leaf diseases, namely, bacterial spot, early blight, late blight, 

leaf mold, spectorial leaf spot, spider mites two spotted spider mite, target 

spot, yello leaf curl virus, mosaic virus and healthy. The proposed system is 

designed to provide an easy-to-use and efficient solution for detecting tomato 

leaf diseases. It uses a web interface page that allows end-users to upload 

images of tomato leaves and get real-time predictions on the presence of 

diseases. The system is capable of processing a large number of images 

quickly, making it ideal for use in agricultural applications. 

 

7.2 Future Scope 

Tomato leaf disease detection using CNN has great potential for future 

applications. Here are some possible future scopes for this technology: 

 Real-time disease detection: The current project used pre-captured 

images of tomato leaves for disease detection. In the future, the system 

can be designed to detect diseases in real-time using a camera attached 

to a robotic arm that moves around the tomato plants. This would 

enable early detection and treatment of diseases, thus improving crop 

yields and reducing losses. 

 Transfer learning: The current project used a CNN model. In the future, 

transfer learning can be used to improve the accuracy of the model. 

This would involve using pre-trained CNN models that have been 
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trained on a large dataset and fine-tuning them on the tomato leaf 

disease dataset. 

 Deployment on mobile devices: The current project was implemented 

on a desktop computer. In the future, the system can be optimized for 

deployment on mobile devices such as smartphones and tablets. This 

would enable farmers to use the system in the field for real-time disease 

detection and treatment. 
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