

PROJECT REPORT ON

TOMATO LEAF DISEASE DETECTION USING CNN

Submitted in partial fulfilment of the Requirement

for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

Project Associates Regd. No
T. Bindu Madhavi 19091A0424
K. Yerikalaiah 19091A04S5
T. Vamsi 19091A04P7
S, Naveen Kumar 19091A04C3

Under the Esteemed Guidance of

Dr. P. V. Gopi Krishna Rao
Ph. D, MISOI, MIAENG

Professor, RGMCET, Nandyal

(ESTD-1995)

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

RAJEEV GANDHI MEMORIAL COLLEGE

OF ENGINEERING AND TECHNOLOGY
(AUTONOMOUS)

Affiliated to J.N.T.U.A - Anantapuramu, Approved by A.I.C.T.E - New Delhi,

Accredited by N.B.A - New Delhi, Accredited by NAAC with A+ Grade – New Delhi

NANDYAL –518501, Nandyal Dist. A.P.

YEAR: 2019 - 2023

ACKNOWLEDGEMENT

We earnestly take the responsibility to acknowledge the following

distinguished personalities who graciously allowed us to carry our project

work successfully.

We express deep gratitude to our guide Dr. P. V. Gopi Krishna Rao,

M.E. Ph.D, Professor in ECE Department, RGMCET, Nandyal for his

guidance, incessant help and encouragement throughout the course of the

project work, which contributed, to the successful completion of this

project.

We would like to thank Dr. Kethepalli Mallikarjuna, M.Tech., Ph.D,

Professor & Head, Department of ECE, RGMCET, Nandyal, for this valuable

suggestions and encouragement whenever we encountered difficulties

during the project work.

We would like to express my deep sense of gratitude and

indebtedness to Dr. T. Jayachandra Prasad, Principal, RGMCET, Nandyal

for his sustained encouragement and moral support throughout the

course.

We are thankful to our honorable Chairman Dr. M. Santhiramudu,

RGM Group of Institutions and Sri. M. Sivaram, Managing Director,

RGMCET, Nandyal for providing us with required facilities in the college.

We express our thanks to all the faculty and staff members of ECE

Department, RGMCET, Nandyal, for their support in various aspects in

completing the project.

Project Associates

T. Bindu Madhavi 19091A0424

K. Yerikalaiah 19091A04S5

T. Vamsi 19091A04P7

S. Naveen Kumar 19091A04C3

 INDEX PAGE NO

CHAPTER – 1 ... 1

INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 1

1.3 Objectives ... 2

1.4 Motivation ... 2

1.5 Organization of the Project ... 3

CHAPTER – 2 ... 4

LITERATURE REVIEW.. 4

CHAPTER – 3 ... 9

METHODOLOGY ... 9

3.1 Methodology Flow chart .. 9

3.2 Dataset Collection .. 9

3.3 Dataset Statistics .. 10

3.4 Preprocessing ... 10

3.5 Dataset Split .. 11

CHAPTER – 4 ... 12

CNN MODEL ARCHITECTURE AND TRAINING PROCESS ... 12

4.1 CNN Model Architecture ... 12

4.1.1 Convolution Layer ... 13

4.1.2 Relu Activation Function ... 14

4.1.3 Pooling Layers .. 14

4.1.4 Fully Connected Layer .. 15

4.1.5 Softmax Activation Function .. 16

4.1.6 Sparse Categorical Cross entropy .. 16

4.1.7 Adam Optimizer .. 17

4.1.8 Summary of The CNN Model .. 17

4.2 Training Process.. 20

CHAPTER – 5 ... 22

SOFTWARE DESCRIPTION ... 22

5.1 Algorithm Process ... 22

5.2 PYTHON Program Code ... 22

5.2.1 Main Code .. 22

5.2.2 Prediction of an Image Code .. 25

CHAPTER – 6 ... 27

RESULTS ... 27

6.1 Visualization .. 27

6.2 Training results ... 28

6.3 Predicted Images ... 30

CHAPTER - 7 ... 33

CONCLUSION AND FUTURE SCOPE .. 33

7.1 Conclusion.. 33

7.2 Future Scope.. 33

REFERENCES .. 35

ABSTRACT

Plant diseases cause low agricultural productivity. Plant diseases are

challenging to control and identify by the majority of farmers. In order to

reduce future losses, early disease diagnosis is necessary. This study presents

a deep learning approach for detecting tomato leaf diseases using

Convolutional Neural Networks (CNNs). The proposed method involves

preprocessing the tomato leaf images, followed by training the CNN model to

classify them into one of ten categories: healthy, yellow leaf curl virus (YLCV),

bacterial spot (BS), early blight (EB), leaf mold (LM), spectoria leaf spot (SLS)

target spot (TS), two spotted spider mite spot(TSSMS), mosaic virus(MV) and

late blight (LB). The model was trained using a dataset of 16021 tomato leaf

images. The training was conducted for 10 epochs, 20 epochs, and 50 epochs,

and the accuracy achieved was 64%, 94%, and 97%, respectively. These

results demonstrate the effectiveness of the proposed approach in detecting

tomato leaf diseases, and the performance improves with increasing epochs.

The automated approach can aid in the early detection and prevention of

tomato diseases, which can ultimately help in improving the yield and quality

of tomato crops.

 List of Abbreviations

 CNN Convolutional Neural Networks

 MPL Max Pooling layer

 YLCV Yellow Leaf Curl Virus

 BS Bacterial Spot

 EB Early Blight

 LM Leaf Mold

 SLS Spectorial Leaf Spot

 TS Target Spot

 TSSMS Two spotted Spider Mite Spot

 MV Mosaic Virus

 LB Late Blight

List of Figures

Figure 3.1 Methodology flow chart .. 9

Figure 4.1 CNN model architecture .. 13

Figure 4.2 Convolution layer .. 13

Figure 4.3 Max pooling layer .. 15

Figure 4.4 Fully connected layer ... 15

Figure 4.5 Construction layers of CNN model at each level ... 17

Figure 4.6 CNN model output shapes and parameters. .. 19

Figure 6.1 visualization of tomato leaf images ... 27

Figure 6.2 Loss and Accuracy at 20 epochs ... 29

Figure 6.3 Loss and Accuracy at 50 epochs ... 29

Figure 6.4 Plotted the accuracy and loss for both train and validation. 30

List of Tables

Table 3.1 Class distribution of the dataset... 10

Table 3.2 Dataset lengths for train, valid and test...................................... 11

Table 6.1 Comparison of Loss and Accuracy for train and valid at different

epochs. ... 28

Table 6.2 Comparison of Loss and Accuracy for test at different epochs. 29

Tomato Leaf Disease Detection using CNN

Page | 1
Dept. of ECE, RGMCET, Nandyal

CHAPTER – 1

INTRODUCTION
1.1 Background

Tomatoes are one of the most widely cultivated and consumed crops

globally, making it a significant part of the agriculture industry.

Unfortunately, tomato plants are susceptible to various diseases, which can

lead to significant economic losses due to reduced yield and quality. One of

the most common diseases that affect tomato plants is grey leaf spot, which

damages and kills the leaves, ultimately hindering the plant's ability to

produce fruit. The infection caused by the pathogen responsible for grey leaf

spot in tomato plants progresses through four phases: contact, invasion,

latency, and onset. Detecting diseases early can help prevent large-scale

pandemics and enable appropriate management practices.

Traditional methods of detecting diseases are time-consuming and

expensive, especially when the farm is extensive, making it challenging to

monitor each plant. Thus, there is a need for a more efficient and cost-effective

solution. Image processing techniques can automate the detection of diseases

in leaves, thereby saving time, money, and effort. The dataset used in this

study consists of 16021 images of ten types of diseased tomato leaf images.

All images are resized to 256 x 256 and divided into three parts, namely,

training, testing, and validation datasets. By analyzing the features of

diseased leaves, image processing technology can accurately diagnose

illnesses quickly. Deep learning techniques, specifically convolutional neural

networks (CNNs), have proven to be effective in image classification tasks,

including plant disease detection.

1.2 Problem Statement

Manual plant disease detection methods are time-consuming and

inefficient, particularly for large-scale farms. Traditional disease detection

techniques, such as visual inspection, are susceptible to errors and often

Tomato Leaf Disease Detection using CNN

Page | 2
Dept. of ECE, RGMCET, Nandyal

require a team of experts. Moreover, early disease detection is essential to

control and prevent plant diseases, which traditional techniques cannot

guarantee. Therefore, there is a need for an accurate, efficient, and automated

disease detection approach for tomato plants that can provide early detection

and effective prevention.

1.3 Objectives

The main objective of this study is to develop an automated system for

detecting and classifying tomato leaf diseases using CNN. Specifically, this

study aims to:

1 Develop a CNN model that can accurately detect and classify common

tomato leaf diseases, such as early blight, late blight mold, bacteria spot,

leaf mold, target spot, yellow leaf curl virus, two spotted spider mite,

mosaic virus and septoria leaf spot.

2 Compare the performance of the developed CNN model with at different

epochs.

3 Contribute to sustainable agriculture by providing a cost-effective,

automated solution to identify tomato leaf diseases at an early stage,

thereby enabling farmers to take preventive measures and reduce crop

losses.

1.4 Motivation

Identifying and recognition of leaves disease is the solution for saving

the reduction of large farm in crop disease detection and profit in productivity,

it is beneficial in agricultural institute, Biological research.

Tomato Leaf Disease Detection using CNN

Page | 3
Dept. of ECE, RGMCET, Nandyal

1.5 Organization of the Project

 The remaining sections of this study are organized as follows:

 Chapter 2: Literature Review – provides about Literature Survey in

which the existing methods for image classification of Plant leaf

diseases were described.

 Chapter 3: Methodology - presents a detailed description of the dataset

used in this study on tomato leaf disease detection using CNN,

including dataset collection, preprocessing, datset statistics and

dataset split for train, valid and test datasets.

 Chapter 4: This chapter describes the Convolutional Neural Network

(CNN) model architecture used for our image classification task and the

process of training the model.

 Chapter 5: This chapter, describe the algorithm process and related

python program code.

 Chapter 6: This chapter, that presents the visualization of the training

results and predictive analysis obtained from the proposed CNN-based

approach.

 Chapter 7: This chapter, describes the conclusion and future scope.

Tomato Leaf Disease Detection using CNN

Page | 4
Dept. of ECE, RGMCET, Nandyal

CHAPTER – 2

LITERATURE REVIEW

In this chapter, presents literature survey of traditional plant disease

detection approaches based on computer vision technologies are commonly

utilized to extract the texture, shape, colour, and other features of disease

spots. This method has a low identification efficiency because it relies on an

extensive expert understanding of agricultural illnesses. Many academics

have conducted significant research based on deep learning technology to

increase the accuracy of plant disease detection in recent years, thanks to the

fast growth of artificial intelligence technology. The majority of existing

techniques to plant disease analysis are based on disease classification.

A. A Survey on Supervised Convolutional Neural Network and Its Major

Applications; D. T. Mane and U. V. Kulkarni

With the advent of deep learning, the world has proceeded into the new

era of machine learning. With the main intention of getting closer to the

original goal of machine learning, that is, Artificial Intelligence, deep learning

has opened up new avenues to explore. Artificial Neural Networks (ANNs) are

biologically motivated machine learning algorithms applied to solve problems,

where conventional approach fails, such as computer vision. It takes in the

input, let it be an image or an audio signal, extracts features which describe

the input and generalizes these features so that the results obtained can be

replicated for other examples of the input. This paper gives an overview of a

particular type of ANN, known as supervised Convolutional Neural Network

(CNN) and gives information of its development and results in various fields.

Initially, we see the history of CNN followed by its architecture and results of

its applications. The references of the few used papers have been mentioned

here.

Tomato Leaf Disease Detection using CNN

Page | 5
Dept. of ECE, RGMCET, Nandyal

B. Tomato crop disease classification Using A Pre-Trained Deep Learning

Algorithm; Aravind KR, Raja P, Anirudh R.

A study on the classification of three major tomato crop diseases -

Early Blight, Late Blight, and Leaf Mold - using a pre-trained deep learning

algorithm called VGG16. The authors describe the dataset used for the study,

which consisted of images of tomato leaves infected with the three diseases

and healthy leaves. The VGG16 algorithm was fine-tuned using transfer

learning to classify the images into the four categories. The authors report

that the VGG16 algorithm achieved an accuracy of 98.67% in classifying the

images, outperforming other algorithms such as Random Forest and K-

Nearest Neighbours. The paper also discusses the limitations of the study and

potential areas for future research, such as the use of more diverse datasets

and the development of a mobile application for farmers to identify crop

diseases.

C. Attention Embedded Residual CNN for Disease Detection in Tomato

Leaves; Karthik R, Hariharan M, Anand Sundar, Mathikshara Priyanka,

Johnson Annie, Menaka R.

A dataset consisting of images of tomato leaves affected by five different

diseases - Early Blight, Late Blight, Leaf Mold, Septoria Leaf Spot, and Spider

Mites - and healthy leaves. The proposed CNN architecture consists of

residual blocks, which enable the network to learn the mapping between the

input and output more efficiently, and attention modules, which help the

network to focus on the most important features in the images. The authors

report that the proposed approach achieved an accuracy of 98.3% in detecting

tomato crop diseases, outperforming other state-of-the-art approaches such

as VGG16 and Inception-v3. The paper also provides a detailed analysis of the

performance of the proposed approach on different disease classes and

provides visualizations of the attention maps generated by the attention

modules.

Tomato Leaf Disease Detection using CNN

Page | 6
Dept. of ECE, RGMCET, Nandyal

D. Research on deep learning in apple leaf disease recognition. Comput

Electron Agric; Zhong Yong, Zhao Ming.

The article presents a study on the use of deep learning algorithms for

the recognition of apple leaf diseases. The authors developed a deep learning

framework that uses a convolutional neural network (CNN) to automatically

identify and classify different apple leaf diseases based on images. The

authors trained their model on a large dataset of apple leaf images and

achieved high accuracy in disease recognition across multiple apple cultivars.

They also demonstrated the potential for their model to be used in real-world

scenarios, such as in orchards and nurseries. The findings of this study may

have practical applications in the agricultural industry by providing a tool for

early detection and diagnosis of apple leaf diseases. This could ultimately lead

to improved crop yields and reduced economic losses for apple farmers.

Overall, this article demonstrates the potential for deep learning

algorithms to revolutionize the field of crop disease detection and

management, with practical applications in a range of crops and settings.

E. AI-powered banana diseases and pest detection. Plant Methods. 2019;

15:92; Selvaraj MG, Vergara A, Ruiz H, et al.

A dataset of banana plant images and show that it can accurately

detect the presence of diseases and pests with high accuracy. They also

demonstrate that the method can be applied in real-world settings using a

smartphone app that allows farmers to easily capture and upload images of

their plants for analysis. Overall, the study shows the potential of machine

learning techniques for plant disease and pest detection and highlights the

importance of developing practical and accessible tools to support farmers in

monitoring and managing their crops. The authors suggest that their

approach could be extended to other crops and regions, contributing to the

development of more sustainable and efficient agricultural practices.

Tomato Leaf Disease Detection using CNN

Page | 7
Dept. of ECE, RGMCET, Nandyal

F. Rich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation; Girshick, R., J. Donahue, T. Darrell, and J. Malik.

The paper highlights the potential of deep learning techniques for

object detection and segmentation tasks, and introduces a novel approach

that combines convolutional neural networks with region-based processing

for improved accuracy and efficiency. The R-CNN approach has since been

extended and improved in subsequent research, and has become a widely

used method in computer vision and object recognition.

G. Characteristics of tomato plant diseases—a study for tomato plant

disease identification; Fuentes A, Yoon S, Youngki H, Lee Y, Park DS.

Deep learning was proposed by Fuentes et al. for identifying diseases

and pests in tomato plant photos acquired at varying camera resolutions.

Deep learning metaarchitectures, as well as multiple CNN object detectors,

were utilized. Data expansion and local and global class annotation were

utilized to boost training accuracy and decrease false positives. A large-scale

tomato disease dataset was used for end-to-end training and testing. The

system correctly detected nine different pests and diseases from the

complicated scenarios

G. A Deep convolutional neural networks for mobile capture device-based

crop disease classification in the wild. Comput Electron Agric; Picon A,

Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes A.

The article presents a study on the use of deep convolutional neural

networks (CNNs) for crop disease classification using images captured by

mobile devices in the field. The authors developed a CNN-based model called

"DeepPlantPathologist" that can automatically classify crop diseases based on

images of leaves captured in the field.

Tomato Leaf Disease Detection using CNN

Page | 8
Dept. of ECE, RGMCET, Nandyal

The authors trained their model on a large dataset of crop images and

achieved high accuracy in disease classification across multiple crop types.

They also demonstrated the potential for their model to be used in the field

with mobile devices, allowing for real-time disease detection and diagnosis.

Overall, this article demonstrates the potential for deep CNNs to

revolutionize crop disease management by providing an efficient and accurate

tool for disease detection and diagnosis in the field. This technology could

ultimately lead to improved crop yields and reduced economic losses for

farmers.

This chapter represented the literature survey of traditional plant

disease detection approaches based on computer vision technologies are

commonly utilized to extract the texture, shape, colour, and other features of

disease spots. In the chapter 3, will presents a detailed description of the

dataset used in this study on tomato leaf disease detection using CNN,

including dataset collection, preprocessing, datset statistics and dataset split

for train, valid and test datasets.

Tomato Leaf Disease Detection using CNN

Page | 9
Dept. of ECE, RGMCET, Nandyal

CHAPTER – 3

METHODOLOGY

This chapter presents a detailed description of the dataset used in this study

on tomato leaf disease detection using CNN, including dataset collection,

preprocessing, datset statistics and dataset split for train, valid and test

datasets.

3.1 Methodology Flow chart

The following figure shows the methodology flow chart, it describes the

way of approached to detect the tomato leaf diseases.

Figure 3.1 Methodology flow chart

3.2 Dataset Collection

The dataset used for this project was obtained from Kaggle. The

dataset consists of 16,021 tomato leaf images with ten classes:

Tomato_Bacterial_spot,Tomato_Early_blight,Tomato_Late_blight,Tomato_Lea

f_Mold,Tomato_Septoria_leaf_spot,Tomato_Spider_mites_Two_spotted_spider

Tomato Leaf Disease Detection using CNN

Page | 10
Dept. of ECE, RGMCET, Nandyal

_mite,Tomato__Target_Spot,Tomato__Tomato_YellowLeaf__Curl_Virus,Tomat

o__Tomato_mosaic_virus and Tomato_healthy. The images were captured

from different locations, seasons, and under different lighting conditions.

3.3 Dataset Statistics

The dataset consists of 16,021 images with ten different classes

representing different types of tomato leaf diseases and a healthy class. Table

1 presents the class distribution of the dataset.

Table 3.1 Class distribution of the dataset.

S.No Type of tomato leaf disease No. of images

1 Tomato_Bacterial_spot 2,127

2 Tomato_Early_blight 1,000

3 Tomato_Late_blight 1,909

4 Tomato_Leaf_Mold 952

5 Tomato_Septoria_leaf_spot 1,771

6 Tomato_Spider_mites_Two_spotted_spider_mite 1,676

7 Tomato__Target_Spot 1,404

8 Tomato__Tomato_YellowLeaf__Curl_Virus 3,209

9 Tomato__Tomato_mosaic_virus 373

10 Tomato_healthy 1,591

3.4 Preprocessing

Before training the CNN model, the dataset was preprocessed using

several techniques such as data augmentation, normalization, and resizing.

Data Augmentation is a very popular technique in image processing,

especially computer vision to increase the diversity and amount of training

data by applying random (but realistic) transformations. Data augmentation

techniques such as rotation, flipping (horizontal and vertical), and random

cropping were applied to increase the size of the dataset and introduce more

variability in the data.

Tomato Leaf Disease Detection using CNN

Page | 11
Dept. of ECE, RGMCET, Nandyal

Normalization was applied to scale the pixel values between 0 and 255 to

improve the convergence of the model during training.

Resizing was also applied to standardize the image size to 256x256 pixels to

reduce the computational cost of training the mode and also send the images

as batches as the batch size is 32.

3.5 Dataset Split

To evaluate the performance of the CNN model, the dataset was split

into three subsets, namely the training dataset, validation dataset, and test

dataset. The training dataset was used to train the model, the validation

dataset was used to tune the hyperparameters, and the test dataset was used

to evaluate the performance of the model on unseen data.

The dataset was split randomly into the three subsets, with the

training dataset containing 80% of the images, the validation dataset

containing 10% of the images, and the test dataset containing 10% of the

images. Table 2 shows the dataset lengths for the train, validation, and test

datasets.

 Table 3.2 Dataset lengths for train, valid and test.

Train dataset length 400

Valid dataset length 50

Test dataset length 51

Total dataset length (400+50+51)=501

The dataset split ensures that the model is trained on a sufficiently

large dataset while also allowing for a fair evaluation of its performance on

unseen data.

This chapter described about the methodology of the system. In the next

chapter, Chapter 4, presents the CNN model architecture and the training

process. The dataset split presented in this chapter is used to train and

evaluate the performance of the model.

Tomato Leaf Disease Detection using CNN

Page | 12
Dept. of ECE, RGMCET, Nandyal

CHAPTER – 4

CNN MODEL ARCHITECTURE AND TRAINING

PROCESS

In this chapter, describes the Convolutional Neural Network (CNN) model

architecture used for our image classification task and the process of training

the model. The architecture includes multiple convolutional and pooling

layers, followed by fully connected layers, and ends with a softmax output

layer. The training process involves initializing the model parameters, defining

the loss function, selecting an optimization algorithm, and iteratively

updating the model parameters using backpropagation and gradient descent.

4.1 CNN Model Architecture

A Convolutional Neural Network (CNN) is a type of artificial neural

network commonly used for image and video analysis, recognition, and

processing. It is designed to automatically extract meaningful features from

raw pixel data of an image, enabling it to recognize objects, faces, shapes, and

patterns.

CNNs are inspired by the structure and function of the visual cortex

in the brain. The network is made up of a series of interconnected layers, each

consisting of several neurons that perform simple computations on the input

data. The layers are typically arranged in a specific order, including

convolutional layers, pooling layers, and fully connected layers. The following

fig 2 shows the CNN model architecture with properly connected layers.

Tomato Leaf Disease Detection using CNN

Page | 13
Dept. of ECE, RGMCET, Nandyal

Figure 4.1 CNN model architecture

4.1.1 Convolution Layer

Convolutional layers are the core building blocks of a CNN. They apply

filters or kernels to the input image, sliding over the entire image and

performing a dot product between the filter and the input pixels. This process

generates a feature map, highlighting the regions of the input image that are

most important for recognizing a particular pattern or object. Fig 3 shows the

mathematical operation kernel filter with input image.

Figure 4.2 Convolution layer

Tomato Leaf Disease Detection using CNN

Page | 14
Dept. of ECE, RGMCET, Nandyal

Fig 3 illustrates the mathematical operation of the convolution layer,

where a 2x2 kernel filter is convolved with an input image. The resulting

feature map highlights the edges and corners of the object in the image.

4.1.2 Relu Activation Function

The Rectified Linear Unit (ReLU) activation function is a widely used

activation function in CNNs. It introduces nonlinearity into the network and

improves its ability to model complex relationships between the input and

output data. The ReLU function only allows positive values to pass through

the neuron. When the input to the neuron is positive, the output is equal to

the input value, and when the input is negative, the output is equal to zero.

 The ReLU function is defined as f(x) = max{0,x}.

4.1.3 Pooling Layers

Pooling layers are an essential component of Convolutional Neural

Networks (CNNs) used in computer vision applications. They are used to

reduce the spatial dimensionality (width and height) of the input data while

retaining its essential features.

Max pooling is a commonly used type of pooling layer in which the

maximum value within a defined region of the input feature map is selected

and then passed on to the next layer. The size of this defined region (often

referred to as the pooling window or kernel size) is typically set by the user.

Fig 4 shows the operation of max pooling.

For example, let's say we have an input feature map with a size of 6x6

and a pooling window size of 2x2. The max pooling operation would take place

as follows:

1. The input feature map is divided into non-overlapping regions of size

2x2.

2. The maximum value within each region is identified.

3. A new feature map is created with a size of 3x3, consisting of the

maximum values from each region.

Tomato Leaf Disease Detection using CNN

Page | 15
Dept. of ECE, RGMCET, Nandyal

Figure 2.3 Max pooling layer

4.1.4 Fully Connected Layer

 Fully connected input layer – The preceding layers' output is

"flattened" and turned into a single vector which is used as an input

for the next stage.

 The first fully connected layer – adds weights to the inputs from the

feature analysis to anticipate the proper label.

 Fully connected output layer – offers the probability for each label in

the end.

Fig 5 shows the internal working of fully connected layer

Figure 4.4 Fully connected layer

Tomato Leaf Disease Detection using CNN

Page | 16
Dept. of ECE, RGMCET, Nandyal

4.1.5 Softmax Activation Function

The softmax activation function is a mathematical function that is

commonly used in artificial neural networks, particularly in multi-class

classification problems. It is used to produce a probability distribution over

the possible classes in the output layer of a neural network.

 Where Zi is the i-th element of the input vector and the sum

(i.e.)is taken over all elements j in the input vector.

4.1.6 Sparse Categorical Cross entropy

The sparse categorical cross-entropy loss function calculates the cross-

entropy loss between the predicted probability distribution and the target

label tensor, taking into account the sparsity of the target label tensor. The

formula for sparse categorical cross-entropy is:

where y_true is the target label tensor, y_pred is the predicted output of the

model, and the log and sum operations are performed over the predicted

probability distribution for each sample in the batch, but only considering the

element corresponding to the class index of the target label.

Tomato Leaf Disease Detection using CNN

Page | 17
Dept. of ECE, RGMCET, Nandyal

4.1.7 Adam Optimizer

Adam (Adaptive Moment Estimation) optimizer is a stochastic gradient

descent optimization algorithm used to optimize the parameters of a neural

network during training. In other terms Adam is an optimizer used to update

the wights and biases of a neural network during training.

4.1.8 Summary of The CNN Model

The construction of a Convolutional Neural Network (CNN) model with

multiple levels, each consisting of convolution layers and max pooling layers.

The model has six levels with decreasing output shape reduction, and the

input data is sent as batches with a batch size of 32. The convolution layers

have 32, 64, 64, 64, 64, and 64 filters, respectively, with a kernel size of 3x3

and ReLU activation. Each convolution layer is followed by a max pooling layer

with a pool size of 2x2. The output shape of each layer is calculated based on

the input size, kernel size, padding, and stride. The output parameters of each

convolution layer are calculated based on the kernel filter size, number of

filters, and number of previous filters, while the output parameters of the

dense layer are based on the input and output channel numbers. The overall

CNN model data is summarized in figure 6

Figure 4.5 Construction layers of CNN model at each level

The data is given format as following way are :

Tomato Leaf Disease Detection using CNN

Page | 18
Dept. of ECE, RGMCET, Nandyal

a. Convolutional layer: 32 filters, kernel size 3x3, ReLU activation

i. Max pooling layer: pool size 2x2

b. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation
i. Max pooling layer: pool size 2x2

c. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation

i. Max pooling layer: pool size 2x2

d. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation
i. Max pooling layer: pool size 2x2

e. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation

i. Max pooling layer: pool size 2x2
f. Convolutional layer: 64 filters, kernel size 3x3, ReLU activation

i. Max pooling layer: pool size 2x2

The following figure shows the summary of CNN model data of the otput

shapes and respected parameters at each convolution layer and max pooling

layers.

Tomato Leaf Disease Detection using CNN

Page | 19
Dept. of ECE, RGMCET, Nandyal

Figure 4.6 CNN model output shapes and parameters.

The images are sent as batches, the batch size is 32 and before fed to the algorithm. In

the output shape just observe that first column represents batch size that means it contains 32

images.

Parameters

A. Output Shape reduction from one layer to other.

There are two cases to determine the output shape of each layer :

1. At the kernel filter to the convolution layer to convolution then just do,

Output shape = Input(height or width) -kernel(height or width +1)

Tomato Leaf Disease Detection using CNN

Page | 20
Dept. of ECE, RGMCET, Nandyal

Input size is (i, i)

Kernel size is (k,k)

Output shape = i-k + 1

This one is applicable for padding is false and stride is 1

2. At max pooling then just take half of the size of the convolution layer.

Convolution Layer size is (x,x).

Output shape= floor (x/2)

 B. Parameters Calculation

a. For first convolution layer

Kernel filter size is (m, n)

 Output parameter = (m x n x channels +1)x no. of filters

 b. For remaining layers

 Output parameters = (m x n x no. of previous filters+1)x no. of filters

 c. For Dense layer

 Input Channel no is i.

 Output Channel no is j.

 Output parameters = j x (i+1)

4.2 Training Process

The training process involves initializing the model parameters,

defining the loss function, selecting an optimization algorithm, and iteratively

updating the model parameters using backpropagation and gradient descent.

It discuss step-by-step process involved in training a neural network:

1. The first step in the training process is loading and preprocessing the

training data. This involves normalizing the data, splitting it into

batches, and converting it into the appropriate format for the model.

This step is discussed in Chapter 3, section 3.3 and 3.5.

2. The second step in the training process is defining the model

architecture. This step involves specifying the neural network's

architecture, including the number and type of layers, activation

functions, optimizer, and loss function. The architecture of the CNN

model is discussed in section 4.1.

Tomato Leaf Disease Detection using CNN

Page | 21
Dept. of ECE, RGMCET, Nandyal

3. The third step in the training process is compiling the model. This step

involves configuring the model for training by specifying the optimizer,

loss function, and any additional metrics to track during training. The

Adam optimizer and Sparse Categorical Cross entropy loss function are

discussed in current chapter sub section 4.1.4 and sub section 4.1.5,

respectively.

4. The final step in the training process is training the model. This step

involves feeding the training data into the model, computing the output,

and adjusting the model parameters using the Adam optimizer

algorithm to minimize the loss function. The number of training epochs

determines how many times the entire training dataset is used to train

the model. The trained model is used for testing on the test set in the

next chapter – 6 Results under the section 6.2 Training Results.

This chapter discussed CNN model architecture and the step-by-step

process involved in training a neural network model, including loading and

preprocessing the training data, defining the model architecture, compiling

the model, and training the model. In the next chapter, Chapter 5, presents

the algorithm process, implementation code for the automatic detection for

tomato leaf disease detection.

Tomato Leaf Disease Detection using CNN

Page | 22
Dept. of ECE, RGMCET, Nandyal

CHAPTER – 5

SOFTWARE DESCRIPTION

In this chapter, describes the algorithm process and related python program

code.

5.1 Algorithm Process

Step. 1 - Import the necessary libraries.

Step. 2 - Set the input parameters, such as image size, batch size, and

number of classes.

Step. 3 – Load the dataset and preprocess the images

Step. 4 -Define the CNN model architecture.

Step. 5 - To train the CNN model at different epochs.

Step. 6 – Evaluate the performance of the model and save the model with .h5

 format

Step. 7 - Reload the model and predict the tomato leaf images.

5.2 PYTHON Program Code
5.2.1 Main Code

import tensorflow as tf

from tensorflow.keras import models, layers
import matplotlib.pyplot as plt

import numpy as np

IMAGE_SIZE = 256
BATCH_SIZE = 32

CHANNELS = 3

EPOCHS = 50

dataset = tf.keras.preprocessing.image_dataset_from_directory(

r"C:\Users\KP\OneDrive\Desktop\pythonprojectdeep\Datasets\PlantVillag

e",
shuffle = True,

image_size = (IMAGE_SIZE,IMAGE_SIZE),

batch_size = BATCH_SIZE
)
class_names = dataset.class_names

Tomato Leaf Disease Detection using CNN

Page | 23
Dept. of ECE, RGMCET, Nandyal

class_dict = {}

count = 0

for names in class_names:

 class_dict[names] = count

 count = count + 1

class_dict

for image_batch, label_batch in dataset.take(1):

 print(image_batch.shape)

 print(label_batch.numpy())

for image_batch, label_batch in dataset.take(1):

 print(image_batch[0].numpy())

for image_batch, label_batch in dataset.take(1):

 print(image_batch[0].shape)

plt.figure(figsize=(20,20))

for image_batch, label_image in dataset.take(1):

 for i in range(12):

 ax = plt.subplot(3,4,i+1)

 plt.title(class_names[label_batch[i]])

 plt.imshow(image_batch[i].numpy().astype("uint8"))

 plt.axis("off")

def get_dataset_partition(ds, train_split = 0.8, val_split = 0.1, test_split = 0.1,
shuffle = True, shuffle_size =1000):

 ds_size = len(ds)

 if shuffle:

ds = ds.shuffle(shuffle_size, seed=12)

 train_size = int(train_split*ds_size)

 val_size = int(val_split*ds_size)

 train_ds1 = ds.take(train_size)

 val_ds1 = ds.skip(train_size).take(val_size)

 test_ds1 = ds.skip(train_size).skip(val_size)

 return train_ds1, val_ds1, test_ds1

train_ds, val_ds, test_ds = get_dataset_partition(dataset)

train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTU
NE)

val_ds=val_ds.cache().shuffle(1000).prefetch(buffer_size = tf.data.AUTOTUNE)

test_ds=test_ds.cache().shuffle(1000).prefetch(buffer_size =
tf.data.AUTOTUNE)

Tomato Leaf Disease Detection using CNN

Page | 24
Dept. of ECE, RGMCET, Nandyal

resize_rescale = tf.keras.Sequential([

 layers.experimental.preprocessing.Resizing(IMAGE_SIZE, IMAGE_SIZE),

 layers.experimental.preprocessing.Rescaling(1.0/255)

])

data_augmentation = tf.keras.Sequential([

 layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),

 layers.experimental.preprocessing.RandomRotation(0.2)

])

train_ds = train_ds.map(

 lambda x, y: (data_augmentation(x, training=True), y)

).prefetch(buffer_size=tf.data.AUTOTUNE)

input_shape = (BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, CHANNELS)

n_classes = 10

model = models.Sequential([

 resize_rescale,

 data_augmentation,

 layers.Conv2D(32, (3,3), activation = 'relu', input_shape = input_shape),

 layers.MaxPooling2D((2,2)),

 layers.Conv2D(64, kernel_size = (3,3), activation = 'relu'),

 layers.MaxPooling2D((2,2)),

 layers.Conv2D(64, kernel_size = (3,3), activation = 'relu'),

 layers.MaxPooling2D((2,2)),

 layers.Conv2D(64, (3,3), activation = 'relu'),

 layers.MaxPooling2D((2,2)),

 layers.Conv2D(64, (3,3), activation = 'relu'),

 layers.MaxPooling2D((2,2)),

 layers.Conv2D(64, (3,3), activation = 'relu'),

 layers.MaxPooling2D((2,2)),

 layers.Flatten(),

 layers.Dense(64, activation = 'relu'),

 layers.Dense(n_classes, activation = 'softmax'),

])

model.build(input_shape = input_shape)

model.summary()

model.compile(

 optimizer = 'adam',

Tomato Leaf Disease Detection using CNN

Page | 25
Dept. of ECE, RGMCET, Nandyal

 loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits =
False),

 metrics = ['accuracy'])

history = model.fit(

 train_ds,

 epochs = EPOCHS,

 batch_size = BATCH_SIZE,

 verbose = 1,

 validation_data = val_ds)

scores = model.evaluate(test_ds)

history.history.keys()

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

loss = history.history['loss']

val_loss = history.history['val_loss']

plt.figure(figsize=(15,15))

plt.subplot(1,2,1)

plt.plot(range(EPOCHS), acc, label= 'Training Accuracy')

plt.plot(range(EPOCHS), val_acc, label = 'Validation Accuracy')

plt.legend(loc='lower right')

plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)

plt.plot(range(EPOCHS), loss, label = 'Training loss')

plt.plot(range(EPOCHS), val_loss, label = 'Validation loss')

plt.legend(loc = 'upper right')

plt.title('Training and Validation loss')

plt.show()

5.2.2 Prediction of an Image Code

%%writefile tomatoDL.py

import streamlit as st

import tensorflow as tf

from tensorflow.keras.preprocessing import image

from tensorflow.keras.models import load_model

import numpy as np

import matplotlib.pyplot as plt

from PIL import Image

Tomato Leaf Disease Detection using CNN

Page | 26
Dept. of ECE, RGMCET, Nandyal

st.set_option('deprecation.showfileUploaderEncoding', False)

st.title('Image classifier Deep learning')

st.text('Upload the Image')

class_names=['Tomato_Bacterial_spot',

 'Tomato_Early_blight',

 'Tomato_Late_blight',

 'Tomato_Leaf_Mold',

 'Tomato_Septoria_leaf_spot',

 'Tomato_Spider_mites_Two_spotted_spider_mite',

 'Tomato__Target_Spot',

 'Tomato__Tomato_YellowLeaf__Curl_Virus',

 'Tomato__Tomato_mosaic_virus',

 'Tomato_healthy']

reloaded_model = tf.keras.models.load_model('saved_model.h5')

uploaded_file = st.file_uploader("Choose an Image...",type='JPG')

if uploaded_file is not None:

 img=Image.open(uploaded_file)

 st.image(img,caption='Uploaded Image')

 if st.button('PREDICT'):

 st.write('Result..')

 test_image = image.img_to_array(img)

 test_image = np.expand_dims(test_image, axis = 0)

 prediction = reloaded_model.predict(test_image,batch_size=32)

 st.write("Predicted label : ", class_names[np.argmax(prediction[0])])

 confidence = round(100 * (np.max(prediction[0])), 2)

 st.write('Confidence : ',confidence)

! streamlit run tomatoDL.py

This code provides a basic framework for implementing the proposed

algorithmic approach for tomato leaf disease detection using CNN. However,

it may require modifications based on the specific dataset and requirements.

In the next chapter 6 ,that will presents the visualization of the training

results and predictive analysis obtained from the proposed CNN-based

approach

Tomato Leaf Disease Detection using CNN

Page | 27
Dept. of ECE, RGMCET, Nandyal

CHAPTER – 6

RESULTS

In this chapter, that presents the visualization of the training results and

predictive analysis obtained from the proposed CNN-based approach.

6.1 Visualization

 The aim of this study is to detect the different types of tomato leaf

diseases using convolutional neural networks (CNNs). The dataset used for

this study is Plant Village, it taken from the Kaggle website, which contains

ten types of tomato leaf images with labels indicating healthy and unhealthy

leaves. Figure 8 shows the different types of tomato leaf images with their

corresponding labels.

Figure 6.1 visualization of tomato leaf images

Tomato Leaf Disease Detection using CNN

Page | 28
Dept. of ECE, RGMCET, Nandyal

6.2 Training results

The training results for a CNN typically include the loss and accuracy

metrics during the training process. The loss metric is a measure of how well

the model is performing on the training data and is typically calculated as the

difference between the predicted output and the actual output. The goal of

the training process is to minimize the loss function. As discussed chapter 4,

section 4.1 the concept of CNN model architecture and section 4.2 the training

process.

CNN model was trained at 10epochs, 20 epochs and 50epochs. The total

dataset length is 501. As discussed chapter 3 Table 2 shows the dataset

lengths for train, valid and test.

From the results shown in Table 3, it is observed that the accuracy increases

and the loss decreases with a modification in the number of epochs.

 Table 6.1 Comparison of Loss and Accuracy for train and valid at
different epochs.

S.

No

No. of

epochs

Train

Accuracy

Train

Loss

Valid

Accuracy

Valid

 Loss

1 10 0.64 0.34 0.61 0.45

2 20 0.94 0.15 0.91 0.26

3 50 0.97 0.08 0.95 0.14

The following figure shows the last five epochs at the given 20 epochs running

time, accuracy and loss, it is taken from the our implemented part of CNN

model output screenshot.

Tomato Leaf Disease Detection using CNN

Page | 29
Dept. of ECE, RGMCET, Nandyal

Figure 6.2 Loss and Accuracy at 20 epochs

The following figure shows the last six epochs at the given 20 epochs

running time, accuracy and loss, it is taken from the our implemented part of

CNN model output screenshot

Figure 6.3 Loss and Accuracy at 50 epochs

Evaluate the performance of the model on test dataset. The below table

shows the obtained accuaracy and loss at different epochs

 Table 6.2 Comparison of Loss and Accuracy for test at different
epochs.

S.No No. of

Epochs

Train

Accuracy

Loss

Accuracy

1 10 0.60 0.38

2 20 0.90 0.28

3 50 o.96 0.12

Tomato Leaf Disease Detection using CNN

Page | 30
Dept. of ECE, RGMCET, Nandyal

The below figure shows the variations of accuracy and loss for both train and

validation.

Figure 6.4 Plotted the accuracy and loss for both train and validation.

The above Training and Validation Accuracy graph shows that with the

increase in the Training accuracy there is a increase in the Validation

accuracy. From the Training and the Validation loss graph, it shows that with

the decrease in the training loss there is a decrease in the validation loss.

6.3 Predicted Images

 Actually, the trained CNN model saved with saved_model.h5, at

the time of predicting an image reload it and do predictions. In this project,

the interface designed a dynamic path for image predictions using a web

interface page, a web page with an interface that allows end-users to select

images of their choice and perform predictions on them. The implementation

of the interface page is kept in one file named 'tomatoDL.py'. This file contains

the necessary code to run the web interface page and process the selected

images for predictions. The following command run on jupyter notebook then

open the web page on by default browser and end user select images themself

an-d do predictions. The implementation details of this process can be found

in Chapter 5, Section 5.2.2. prediction of an image.

!streamlit run tomatoDL.py

Tomato Leaf Disease Detection using CNN

Page | 31
Dept. of ECE, RGMCET, Nandyal

Different types of tomato leaf images predicted with predicted label

and confidence

In a tomato leaf disease detection system using CNN, there are

different types of tomato leaf images that can be predicted based on the type

of disease present in the leaves. Some common types of tomato leaf images

that can be predicted using a CNN include, as discussed in chapter 4 the

concept of CNN model and training process.

Tomato Leaf Disease Detection using CNN

Page | 32
Dept. of ECE, RGMCET, Nandyal

Tomato Leaf Disease Detection using CNN

Page | 33
Dept. of ECE, RGMCET, Nandyal

CHAPTER - 7

CONCLUSION AND FUTURE SCOPE

7.1 Conclusion

In this project, we have presented a approach for tomato leaf disease detection

using convolutional neural networks (CNN). We trained a deep learning model

using a dataset of tomato leaf images, which was collected from various

sources. The trained model was able to accurately detect the presence of ten

common tomato leaf diseases, namely, bacterial spot, early blight, late blight,

leaf mold, spectorial leaf spot, spider mites two spotted spider mite, target

spot, yello leaf curl virus, mosaic virus and healthy. The proposed system is

designed to provide an easy-to-use and efficient solution for detecting tomato

leaf diseases. It uses a web interface page that allows end-users to upload

images of tomato leaves and get real-time predictions on the presence of

diseases. The system is capable of processing a large number of images

quickly, making it ideal for use in agricultural applications.

7.2 Future Scope

Tomato leaf disease detection using CNN has great potential for future

applications. Here are some possible future scopes for this technology:

 Real-time disease detection: The current project used pre-captured

images of tomato leaves for disease detection. In the future, the system

can be designed to detect diseases in real-time using a camera attached

to a robotic arm that moves around the tomato plants. This would

enable early detection and treatment of diseases, thus improving crop

yields and reducing losses.

 Transfer learning: The current project used a CNN model. In the future,

transfer learning can be used to improve the accuracy of the model.

This would involve using pre-trained CNN models that have been

Tomato Leaf Disease Detection using CNN

Page | 34
Dept. of ECE, RGMCET, Nandyal

trained on a large dataset and fine-tuning them on the tomato leaf

disease dataset.

 Deployment on mobile devices: The current project was implemented

on a desktop computer. In the future, the system can be optimized for

deployment on mobile devices such as smartphones and tablets. This

would enable farmers to use the system in the field for real-time disease

detection and treatment.

Tomato Leaf Disease Detection using CNN

Page | 35
Dept. of ECE, RGMCET, Nandyal

REFERENCES

[1] D. T. Mane and U. V. Kulkarni, “A survey on supervised convolutional

neural network and its major applications,” International Journal of Rough

Sets and Data Analysis, vol. 4, no. 3, pp. 71–82, 2017.

[2] Aravind KR, Raja P, Anirudh R. Tomato crop disease classification Using

A Pre-Trained Deep Learning Algorithm, Procedia Comput Sci. 2018;

133:1040–7.

[3] Karthik R, Hariharan M, Anand Sundar, Mathikshara Priyanka, Johnson

Annie, Menaka R. Attention embedded residual CNN for disease detection in

tomato leaves. Applied Soft Comput. 2020.

[4] Zhong Yong, Zhao Ming. Research on deep learning in apple leaf disease

recognition. Comput Electron Agric. 2020; 168:105146.

[5] Selvaraj MG, Vergara A, Ruiz H, et al. AI-powered banana diseases and

pest detection. Plant Methods. 2019; 15:92.

[6] Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature

Hierarchies for Accurate Object Detection and Semantic Segmentation." CVPR

'14 Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern

Recognition. Pages 580-587. 2014.

[7] Fuentes A, Yoon S, Kim SC, Park DS. A robust deep-learning-based

detector for real-time tomato plant diseases and pest’s recognition. Sensors.

2022; 2017:17.

[8] Picon A, Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes

A. Deep convolutional neural networks for mobile capture device-based crop

disease classification in the wild. Comput Electron Agric. 2019;1(161):280–

90.

	77df36687ac1f44749ff588e90c7490dc0b8d2096b84ebf5fe6552c8edc651f3.pdf
	195d0ebf73f32b4533519fdf6e639f81f6ed6038b3155213970034a14be8eb50.pdf
	Submitted in partial fulfilment of the Requirement for the award of the degree of

	77df36687ac1f44749ff588e90c7490dc0b8d2096b84ebf5fe6552c8edc651f3.pdf
	77df36687ac1f44749ff588e90c7490dc0b8d2096b84ebf5fe6552c8edc651f3.pdf
	195d0ebf73f32b4533519fdf6e639f81f6ed6038b3155213970034a14be8eb50.pdf
	CHAPTER – 1
	INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Objectives
	1.4 Motivation
	1.5 Organization of the Project

	CHAPTER – 2
	LITERATURE REVIEW
	CHAPTER – 3
	METHODOLOGY
	3.1 Methodology Flow chart
	3.2 Dataset Collection
	3.3 Dataset Statistics
	3.4 Preprocessing
	3.5 Dataset Split

	CHAPTER – 4
	CNN MODEL ARCHITECTURE AND TRAINING PROCESS
	4.1 CNN Model Architecture
	4.1.1 Convolution Layer
	4.1.2 Relu Activation Function
	4.1.3 Pooling Layers
	4.1.4 Fully Connected Layer
	4.1.5 Softmax Activation Function
	4.1.6 Sparse Categorical Cross entropy
	4.1.7 Adam Optimizer
	4.1.8 Summary of The CNN Model
	4.2 Training Process

	CHAPTER – 5
	SOFTWARE DESCRIPTION
	5.1 Algorithm Process
	5.2 PYTHON Program Code
	5.2.1 Main Code
	5.2.2 Prediction of an Image Code

	CHAPTER – 6
	RESULTS
	6.1 Visualization
	6.2 Training results
	6.3 Predicted Images

	CHAPTER - 7
	CONCLUSION AND FUTURE SCOPE
	7.1 Conclusion
	7.2 Future Scope

	REFERENCES

